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Ion association is incorporated into the restricted-primitive model (RPM) electrolyte to 

account for the strong attraction between unlike ions.  Two methods are investigated 

within the McMillan-Mayer framework: first is the binding mean-spherical 

approximation (BIMSA) based on the Wertheim Ornstein-Zernike integral equation 

formalism; and the second is the combination of the BIMSA with a simple interpolation 

scheme (SIS) based on the Wertheim thermodynamic perturbation theory. The latter 

gives a better description. Four different association constants are used to calculate the 

degree of dissociation, the critical point and the vapor-liquid coexistence curve.  An 

increase in the association constant leads to a lower critical temperature and a higher 

critical density, and better agreement with computer simulations. When unlike ions are 

fully paired, corresponding to a charged hard dumbbell (CHDB) system, we obtain the 

best agreement with the most recent computer simulations of the RPM electrolyte.  
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I.  INTRODUCTION 

It has been recognized for decades that ion association is an important effect in determining 

criticality and phase behavior of an electrolyte due to strong electrostatic attraction between ions 

of unlike charges. This effect is far from linear in terms of the strength of electrostatic 

interaction. The Debye-Hückel (DH)1 theory and the mean-spherical approximation (MSA)2,3 

theory for electrolytes are essentially linearized Poisson-Boltzmann theories; they yield the 

correct Coulomb screening of long-length scales but cannot capture the nonlinear effect of ion 

association.  Since the early days of the last century, various methods have been suggested to 

take ion association into account.  In 1926, Bjerrum4 added chemical association of ions into the 

DH theory. In the 1980s, Ebeling and Grigo (EG)5 combined ion pairing with the MSA through 

the mass action law (MAL) and the second ionic virial coefficient.  In this method, the ion pair is 

assumed to be an ideal component, i.e., its activity coefficient is unity.  Later, in a similar 

manner, Gillan6, Tani and Henderson7, and Pitzer and Schreiber8 evaluated the effect of ion 

association, including pairs and higher mers.  For a detailed historic account, see recent reviews9-

13. 

In recent years, several theoretical methods have been proposed in which the ion pairing is 

based on the addition of the ad hoc chemical-association model of Bjerrum and EG for the 

restricted-primitive model (RPM) of size-symmetric electrolytes.  Fisher and Levin14,15 extended 

DH theory by considering the solvation of dipolar ion pairs in an ionic fluid (dipole-ion 

interactions).  When the hard core of the ions is neglected, the resulting Debye-Hückel-Bjerrum-

Dipole-Ion (DHBjDI) theory gives a fairly good critical point and coexistence curve when 

compared with Monte Carlo (MC) simulation data18.  DHBjDI model is probably quantitatively 

the most successful theory for the RPM electrolyte presently available. Careful studies12, 
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however, found that the hard-core contribution is important in determining the phase coexistence 

of electrolytes.  However, inclusion of the hard core into DHBjDI the Debye-Hückel-Bjerrum-

Dipole-Ion-Hard-Core (DHBjDIHC) model is in poorer agreement with MC simulation results.  

Comparison with the latest high precision MC simulation data19 shows that large deviations are 

found for both DHBjDI and DHBjDIHC.   

Stell and coworkers16,17 proposed the pairing MSA on the basis of a simple interpolation 

scheme (SIS)20.  In the SIS the cavity correlation function for an associating fluid remains nearly 

the same as that of the dissociated fluid. This approximation is equivalent to the Wertheim first-

order thermodynamic perturbation theory21 that has been widely used to study thermodynamic 

properties of associating fluids and chain- like macromolecules. The ion pairing MSA was 

extended by adding the ion-dipole interactions to model the RPM electrolyte16,17.  Because in the 

MSA the excluded-volume is treated correctly, we expect that this method will give better results 

than DHBjDI. Unfortunately, the calculated critical point and coexistence curve are less 

satisfactory.  Stell and coworkers concluded that the agreement of DHBjDI with MC simulation 

was largely fortuitous.   

Recently, Guillot and Guissani12, and Schröer and coworkers22,23, incorporated dipole-dipole 

interactions and dipolar screening to account for the dielectric effect. But worse results were 

obtained; the calculated critical temperature is too high, the critical density is too low and the 

coexistence curve is too narrow when compared with MC simulation results.   

 In this work, we present two methods to model criticality and phase behavior in the RPM 

electrolyte.  First, the effect of ion association is included using the binding mean-spherical 

approximation (BIMSA) developed earlier24,25.  The salient feature of the BIMSA is that it 

satisfies the exact fully associated zero density DH limit; that is, if two ions associate, the 



J. Chem. Phys. 4 

limiting osmotic coefficient is given by the DH expression for an ion with a charge equal to the 

sum of the two associating ions. The associative mean-spherical approximation (AMSA), 

basically the BIMSA, was briefly described by Raineri et al.26 for size-asymmetric primitive 

model electrolytes.  We use first the analytical solution of the BIMSA expressed in terms of a 

screening parameter BΓ  that is a function of the degree of dissociation.  When BΓ  is replaced by 

Γ  without association, the BIMSA reduces to the SIS.  Second, we use a combination of the 

BIMSA with the SIS, which gives a better critical point and a better coexistence curve.  Section 

II presents the basic model and theoretical framework.  Section III shows calculated results for 

four versions of the association constant, including full association corresponding to the charged 

hard dumbbell (CHDB) system27.  A discussion and concluding remarks is given in Section IV. 

 

II.  MODEL AND THEORY 

At the McMillan-Mayer level, the RPM electrolyte is represented by charged hard spheres 

with identical diameters σ  in a continuous dielectric medium with permittivity ε .  The number 

density of the hard spheres is 02ρ ; half of the species have a charge ze+  and the other half z e−  

(e 191.602 10 C−= ×  is the elementary charge).  The interaction between two particles consists of a 

hard-sphere repulsion and an electrostatic  potential: 
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where R is the center-to-center distance.  The ion association between unlike ions is modeled 

using Baxter’s sticky-point potential inside the hard core σ − .  Only pairs are allowed (no trimers 

or higher mers). 
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Suppose α  is the degree of dissociation, then the number density of free ions is 

ρ ρ ρ α+ −= = 0  and that of neutral ion pairs is ρ ρ α= −0 (1 )p .  The mass action law (MAL) is: 
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where the stoichiometric association constant K depends on density at a given temperature.  K 

can be separated into two parts: 0K K K γ=  in which / pK γ γ γ γ+ −=  is the ratio of the activity 

coefficients of the free ions to that of the neutral pair.  As we will see, correlation functions can 

be used to calculate K γ  instead of the individual activity coefficients, of which the associating 

species is difficult to estimate. The thermodynamic association constant 0K , a constant at given 

temperature, is the infinite-dilute limit of K.  We chose an approximation given by Ebeling28 for 

0K  such that the second ionic virial coefficient is recovered:  
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where * 2 24 /T e zπεσ β=  is the reduced (dimensionless) temperature with Tk B/1=β  and Bk  

(Boltzmann constant) 23 11.38 10 JK− −= × . The degree of dissociation near the critical point 

calculated from 0
EbK  is too large5,16,17. As suggested by Raineri et al.26, two alternate 

thermodynamic association constants 0
OSK 29 and 0

FuK 30 may be used to repair this deficiency.  

Following Raineri et al.26, we chose: 

0 0 0
OS Fu Eb3 12K K K= = .     (5) 
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Figure 1 shows the effect of reduced temperature *T  on these thermodynamic association 

constants; from bottom to top, they are 0
EbK , 0

FuK  and 0
OSK .  All are large at low *T  and decrease 

with increasing *T , indicating strong ion association at low *T .  

As found from MC simulation19,31,32 the structure of the RPM electrolyte is largely that of 

the CHDB in both vapor and liquid phases.  These two models have a similar critical point and 

similar phase behavior suggesting that we can assume full association between anion and cation 

( 0α = , 0
faK = ∞ ) and ignore free ions as a first approximation to model the RPM, as shown 

earlier27. 

The model above for electrolytes with Baxter’s sticky potential, called the sticky-electrolyte 

model (SEM), was studied extensively using the Ornstein-Zernike (OZ) integral equation with a 

hybrid approximation PY/MSA or HNC/MSA.33-35  Recently24,25, we reported an analytical 

solution of the BIMSA by solving the Wertheim Ornstein-Zernike (WOZ) integral equation21.  

Unlike the usual OZ derived from Mayer density expansion, the WOZ is derived from an 

activity/fugacity expansion and can account properly for saturation effects in which only one 

bond is allowed between ions.  This formalism includes the fraction of bonded sites obtained 

from the MAL. 

From the BIMSA, the Helmholtz energy density f has four contributions from, respectively, 

the ideal gas, the hard-sphere repulsion, the MAL and the electrostatic interactions: 

id hs mal elef f f f f= + + + .     (6) 

The ideal-gas contribution is: 

id
0 0 02 ln 2fβ ρ ρ ρ= − ,     (7) 

The hard-sphere repulsion contribution is obtained from the well-known Carnahan-Starling36 

equation of state: 
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where * / 6η ρ π=  ( * 3
02ρ ρ σ= , the reduced density) is the packing fraction of ions before 

association.  The MAL contribution is: 

mal
0 02 ln (1 )fβ ρ α ρ α= + − .          (9) 

The electrostatic-interaction contribution is obtained from the BIMSA24.  However, to obtain the 

correct limit for a very dilute solution, the BIMSA was closed with the exponential 

approximation (BIMSA-EXP)25 that gives: 

3
ele 2
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+ Γ
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where 2 / 4B eβ π ε=l  is the Bjerrum length characterizing the dielectric property of the 

continuous medium.  ΒΓ  is the screening parameter calculated from: 

 2 3 2) (1 ) ( )B B Bσ κ α σ4(Γ + Γ = + Γ ,    (11) 

where κ  is the inverse Debye screening length defined by 24 B k kzκ π ρ= ∑l .  Without 

association, 1α = , BΓ  reduces to ( 1 2 1) /2σκ σΓ = + − , the screening parameter in the usual 

MSA2,3.  In this case, eq. (10) reduces to: 

3
ele 2

02
1 3Bf zβ ρ

σ π
Γ Γ

= − +
+ Γ

l .    (12) 

From the BIMSA25,37 K γ  is given by: 

0( ) / ( )K g gγ σ σ+− +−= ,     (13) 

where σ+− ( )g  is the anion-cation contact pair correlation function from the exponential 

approximation and σ+−
0 ( )g  is the corresponding infinite-dilute limit: 
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where hs 3( ) (1 /2)/(1 )g σ η η= − −  is the contact pair correlation function for a hard-sphere fluid 

from the Carnahan-Starling equation of state36.  With eq. (14), eq. (13) becomes: 
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Equations (6-15) complete the BIMSA model for ion pairing in the RPM electrolyte based on 

the Wertheim Ornstein-Zernike integral equation.  However, we can also use the pair MSA as 

proposed from the SIS.  In the SIS, the cavity correlation function of an associating fluid is 

almost the same as that for a dissociated fluid. This approximation is equivalent to the Wertheim 

first-order thermodynamic perturbation theory21. In the SIS, electrostatic interaction is calculated 

from eq. (12) and K γ  is given by: 

 ref ( )K yγ σ+−= ,     (16) 

where ref ( )y σ+−  is the contact anion-cation cavity correlation function evaluated at 1α = , the 

reference ionic fluid without association. 

As an improvement to the SIS, we propose a simple interpolation between the SIS and the 

BIMSA; we denote this interpolation SIS/BIMSA.  Electrostatic interaction, similar to the SIS, is 

calculated from eq. (12); however K γ  is from eq. (15).  As we will see, this combination gives 

better results. 

 

III.  RESULTS 

Table I lists critical temperature *
cT , critical density *

cρ  in the RPM electrolyte and the 

degree of dissociation cα  at the critical point estimated from the BIMSA and the SIS/BIMSA 
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with four versions of thermodynamic association constant 0K ; included for comparison are those 

from DH1, DHBjDI14, DHBjDIHC14, MSA2,3 and MC simulation19.  Figure 2 shows the 

relationship between *
cT  and *

cρ  from the various models.  For either BIMSA or SIS/BIMSA, 

with increasing 0K  ( 0 0 0 0
Eb Fu OS faK K K K< < < ), cα  decreases as expected, leading to lower *

cT  and 

higher *
cρ .  For a given value of 0K , SIS/BIMSA results in a lower *

cT , higher *
cρ  and larger cα  

than the BIMSA.  As linearized theories, no ion association (i.e., 1cα = ) is contained in DH and 

MSA, and as a consequence they give too high a *
cT  but too low a *

cρ ; indeed values that are far 

from the exact critical point.  The DHBjDI and DHBjDIHC models both give fairly good *
cT  but 

too low a *
cρ .  When 0 0

faK K= = ∞ , that is, when anion and cation associate fully into neutral 

pairs, SIS/BIMSA-fa gives the best prediction (0.0525, 0.0640) for the critical point, very close 

to MC simulation results (0.0496, 0.0792)19.  These favorable results support the assumption that 

the RPM electrolyte may be modeled as the CHDB without taking free ions into account, as 

shown in recent MC simulations19,31,32. 

Figure 3 shows the vapor- liquid coexistence curve in the RPM electrolyte calculated from 

MSA, BIMSA (a), SIS/BIMSA (b) and MC simulations (open squares)19.  From top to bottom, 

the corresponding thermodynamic association constant 0K  increases.  For either BIMSA or 

SIS/BIMSA, with increasing 0K , the slopes of *T  with respect to *ρ  in both vapor and liquid 

phases decrease.  At low temperature *T , for BIMSA, the vapor and liquid phases change little 

with 0K ; in contrast, for SIS/BIMSA, the liquid phase decreases with rising 0K .  Given 0K , 

both the vapor and liquid phases from SIS/BIMSA are flatter than those from BIMSA, i.e., with 

lower slopes, because SIS/BIMSA gives lower *
cT . 
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Figure 4 shows the vapor- liquid coexistence curve in the RPM electrolyte calculated from 

MSA, BIMSA-fa, SIS/BIMSA-fa, DHBjDI14, DHBjDIHC14 and MC simulation (open 

squares)19.  The slopes of the vapor phase from the MSA, BIMSA-fa, DHBjDI and DHBjDIHC 

are too steep compared with MC simulation results; nevertheless, SIS/BIMSA-fa gives much 

better results.  In the liquid phase, DHBjDI gives a density that is too high while DHBjDIHC 

gives a density that is too low. Similar to the prediction for critical point, SIS/BIMSA-fa gives 

the most successful prediction for the coexistence curve when the RPM electrolyte is modeled as 

the CHDB. 

 

IV.  DISCUSSION AND CONCLUSIONS 

In this work two approximations, the BIMSA and the SIS/BIMSA, are presented for the  

study of the RPM electrolyte.  Ion pairing between unlike ions is important in determining the 

critical conditions and the vapor- liquid phase equilibrium.  With increasing association constant, 

the critical temperature *
cT  decreases and the critical density *

cρ  increases.  Compared with the 

BIMSA, in general, the SIS/BIMSA gives a better critical point and coexistence curve.  When 

unlike ions are fully paired, i.e., when the RPM electrolyte becomes to the CHDB, SIS/BIMSA-

fa gives the most successful quantitative prediction for the critical point and of the coexistence 

curve, consistent with the observation from computer simulation that the critical point and phase 

equilibrium of the RPM electrolyte are very similar to those of the CHDB.   

The nature of the criticality in the RPM electrolyte — whether of the classical (mean field or 

van-der-Waals type, classical 0α = ), the Ising type ( Ising 0.11α = ) or crossover between the two — 

remains controversial.  Experimentally, both the classical38,39 and the Ising type40 critical 

behavior have been reported; another possible scenario concerns a crossover from the classical to 
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the Ising type41.  However, by analyzing the heat capacity VC  near the critical point, one set of 

MC simulation results42 suggested the classical criticality in the RPM electrolyte.  Conversely, 

the Ising-type criticality was suggested from more recent MC simulation43.  Indeed, in many 

studies by computer simulation, such as Ref. 19, a priori Ising-type criticality is assumed to 

estimate the critical point with a mixed-field finite-size scaling method. Ultimately, 

renormalization group theory may be required to describe this system properly.  

At present, computer simulation studies are well ahead of the theories in this field.  From 

cluster analysis, there appears to be an appreciable amount of neutral pairs and a linear (chain-

like) alignment of alternatively charged ions.  Theories based on the ad hoc chemical association 

model of Bjerrum and EG describe ion association only at the pairwise level; they cannot 

account for geometries and interactions in larger clusters.   
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Table I. Critical temperature, critical density and the degree of dissociation from theories and 

MC simulation in the RPM electrolyte. a) In Ref. 12, * *0.0521 and 0.0243c cT ρ= =  if the 

hard core repulsion uses the Carnahan-Starling equation of state. 

 

Theory 
*
cT  

*
cρ  αc  Date source  

DH  1/16  1/64π    1 Ref. 1 
DHBjDI 0.0574 0.0280 0.207 Ref. 14 
DHBjDIHC   0.0554a)   0.0260a) 0.144 Ref. 14 
MSA  0.0786 0.0144   1 Ref. 2,3 
BIMSA-Eb 0.0723 0.0293 0.317 This work 
BIMSA-Fu 0.0684 0.0375 0.149 This work 
BIMSA-OS 0.0662 0.0415 0.082 This work 
BIMSA-fa 0.0627 0.0471 0 This work 
SIS/BIMSA-Eb 0.0707 0.0355 0.329 This work 
SIS/BIMSA-Fu 0.0632 0.0511 0.155 This work 
SIS/BIMSA-OS 0.0587 0.0590 0.084 This work 
SIS/BIMSA-fa 0.0525 0.0640 0 This work 
MC 0.0496 0.0792  Ref. 19 
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Figure Captions: 

 

FIG.1. Effect of the reduced temperature on the thermodynamic association constant.  From 

bottom to top: 0
EbK , 0

FuK  and 0
OSK . 

 

FIG.2. Critical temperature *
cT  and density *

cρ  from theories and MC simulation for the RPM 

electrolyte.  Lines are drawn to guide the eye. 

 

FIG.3. Vapor- liquid coexistence curve from theories and MC simulation for the RPM electrolyte.  

(a) BIMSA; (b) SIS/BIMSA.  

 

FIG.4. Vapor- liquid coexistence curve from theories and MC simulation for the RPM electrolyte. 
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FIG.1,      by Jiang et al. 
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FIG.2,      by Jiang et al. 
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FIG.3,      by Jiang et al. 
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FIG.4,      by Jiang et al. 
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